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Abstract- This work presents a model for computing the diffusion coefficients during post-discharge nitriding through 
an inverse problem of coefficient identification in a diffusion model, which considers several layers and Stefan type 
conditions. An approximate solution corresponding to a quasi-stationary state is obtained for the model, using 
qualitative and quantitative information from experimental results. To study the inverse problem we assume that we 
have information about the nitrogen concentration at different depths in the solid after the stabilization of the layers in 
the post-discharge nitriding process. To develop a numerical algorithm for the identification of the diffusion 
coefficients, a functional to be minimized is built. This functional measures the deviation between the data theoretically 
obtained from the approximate solution of the model and the experimental data. 
 
1. INTRODUCTION 

Thermo-chemical nitriding treatment produces an important improvement in the mechanical, tribological and 
chemical properties in steel, thus enhancing the resistance to their fatigue, corrosion and wear [1, 7, 8]. 

In most of the mathematical simulations of nitrogen diffusion in iron or steel reported, nitrogen concentration 
on the surface is taken to be constant from the beginning of the treatment [4, 5, 9,10, 11, 14, 15, 16, 18] and  
consequently it is considered that the thickness of the layers is zero at the initial moment. The evolution of the nitrogen 
concentration on the surface is inherent to the process. In processes where the diffusion takes place through a thermo-
chemical balance between a gaseous mixture and the solid, i.e. mixtures with ammonia, nitrogen concentration on the 
surface depends on the nitrogen potential [4, 14, 16]. 

During weakly ionized plasma assisted processes, pulverization, adsorption and diffusion events take place on 
the specimen surface [10, 11]. The nitrogen concentration on the surface evolves quickly and corresponds to a dynamic 
balance between pulverization towards the atmosphere and the diffusion towards the solid. 

Control or automation of nitriding processes depends on the means requires to identify the nitrogen 
concentration on the surface as well as on a mathematical model adapted to estimate the growth kinetics of compact 
concomitant nitride layers. On the other hand, the understanding and interpretation of the mechanisms of mass transport 
in solid requires experimental validation of the diffusion coefficients. 

In computing diffusion coefficients, using experimental results, it has been assumed that the nitrogen 
concentration has a parabolic growth profile in each layer from the beginning of the process, nevertheless the nitrogen 
assumes different forms in each process and depends on each one. If the nitrogen concentration on the surface evolves 
slowly, the parabolic regime will not be observed during the initial stages, moreover the accuracy in computing 
diffusion coefficients will be limited [4, 5, 10, 11, 14, 16, 18]. 

Nitriding post-discharge processes generate an atmosphere of excited neutral or dissociated species [2, 3, 5, 12, 
13]. These species produce a fast evolution of the nitrogen concentration on the surface [3].  

It has been observed that the presence of atomic nitrogen in post-discharge processes significantly increases the 
mass transfer to a solid compared to other processes.  

Based on experimental results obtained from iron nitriding, in an atmosphere produced by post-discharge 
microwaves, the present work considers a one-dimensional model of layer kinetic growth, and studies the inverse 
problem of diffusion coefficients identification in each phase from the consideration of the stabilization of the layers 
after a certain period of treatment. Such consideration was justified from an experimental point of view and also by 
taking into account the analytical expression of the layer growth kinetics. 

The experimental results obtained by means of treatments assisted during post-discharge generated by a 
microwave source allow the accurate determination of the values of the diffusion coefficients on the basis of the 
solution of an inverse problem which identifies the coefficients in a one-dimensional model of kinetic growth of 
concomitant nitride layers. 

 
2. EXPERIMENTAL PROCEDURE  

Samples were obtained from an ARMCO iron bar (25.4 mm in diameter and 7 mm thick, Mn 880 ppm; C and 
P, 200 ppm; and S 150 ppm). Nitriding was carried out in a post-discharge microwave-generated plasma described 
elsewhere [3]. The general sequence of the nitriding experiments started with heating up the sample to 893 K in a 
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tubular resistance furnace in a non-oxidized and non-nitriding atmosphere composed of 26Ar-80H2 sccm at a total 
pressure of 900 Pa. The applied and reflected were 200 W and 65 W respectively, and the distance from the discharge 
point was 7 cm. Upon reaching the prescribed temperature, the temperature, the atmosphere was switched to a mixture 
of 300N2-26Ar-80H2 at 1200 Pa and recording of the nitriding time started. After the nitriding time was completed, the 
atmosphere was switched back to the initial non-oxidizing, non nitriding atmosphere. 

Figure 1 presents a cross-sectional view of a sample nitrided for 120 min under the conditions described 
previously. The nitrides below the compact nitride layer precipitated during the cooling of the sample due to the 
desaturation of the ferrite; the width of this zone is between 40 to 50 µ m. However, the diffusion zone of the nitrogen 

in the ferrite is about 3 mm. 
 

                            
 
             Figure 1.  Cross sectional view of a nitrided iron sample, under post-discharge conditions.  
 
3. MATHEMATICAL MODEL 

Let us propose a mathematical model which describes the growth of the layers during the post-discharge 
nitriding process. We suppose that the diffusion is one-dimensional and planar and the temperature at every point in the 
specimen is identical during the whole process. This model presents five steps. The first step ends when the surface 

reaches the equilibrium concentration  at a time . This step is modeled by: SC 0t
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where λ  is the kinetic reaction coefficient,  is the diffusion coefficient,  is the equilibrium nitrogen 

concentration in the atmosphere remote from the surface and  represents the nitrogen concentration for time  
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where  denotes the initial concentration profile when the layer formation begins. )(xf
From the starting profile two layers of nitrogen and a diffusion zone begin to be formed and they slowly 

displace into the interior of the metal. In each layer and diffusion zone, diffusion coefficient takes a constant value 

. Between adjacent layers and diffusion zone there is a jump in concentration. In each of the first two 

layers a minimum constant value  is reached. For every  let us define 

3,2,1, =iDi

2,1,min =iC i
0tt > 2,1,)( =itiξ  as the 

depth of the corresponding layer. Since diffusion coefficients are constants, it follows that the concentration in each 

layer is a decreasing function of the depth, then )(tiξ  is the depth at which the concentration reaches the minimum 

value  (see Figures 2a-d). As a consequence of the process, there is an experimental value of the 

concentration  and a time  such that . In this situation we say that the 

layer was completely formed at time , as shown schematically in Fig. 2 b-d. We shall assume . For 
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Figures 2a-d. Schematic representation of nitrogen concentration as a function of depth for the case of a two    
                 compact nitride layers where nitrogen is in solution in ferrite. 
 
In what follows, we propose a model for the process of post-discharge nitriding from the starting profile .  This 

model describes the beginning of the layers and interfaces formation. We consider three stages: 

)(xf
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Note that this model describes the three different stages of the process, characterized by the following facts: 

When   we have ),[ 10 ttt ∈ 2,1,))(()( == itftF ii ξ .  For ),[ 21 ttt ∈ we have ,  2
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                                                       3
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At the last mentioned stage the three layers are completely formed as shown in Figure 2d. In this case the 
model corresponds to the growth of layers and movement of interfaces. This last stage corresponds to a period, previous 
to the layer growth “stabilization”, where layers and interfaces exactly follow the portrait of a moving boundary 
behavior of the Stefan type.   

For large values of time the layer growth becomes negligible, which is justified from experimental essays and 

also analytically since the interfaces move with velocities proportional to 
t

1
 and become small for large values of 

time. So the process arrives to a quasi-steady state, where the variation of 
t
C

∂
∂

 is very small. 

3.1 Simulation of the concentration profile in the quasi-steady state 
We consider that the concentration profile in the quasi-steady state has the form: 
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Expression (5) guarantees that the last two terms also satisfy the steady equation 0
2

2

=
dx

Cd
, while the first 

term should be such that  is very small for values of 2
~

)()1( −−− im
iiii xxamm x  in the layer. The form of 

expression (5) is inspired by Goodman’s method [17, 18]. 

−i

Thus, the problem is to determine the relationships between such that 

conditions for concentration decrease at each phase, and a concentration jump and null net flow at the interfaces are 
fulfilled. More exactly we write the following: 
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where  and k  are integers greater than or equal two. In the numerical experiments the linear case 

( ) is also considered. 

nm,
0=== knm

 
4. INVERSE PROBLEM AND NUMERICAL RESULTS 

To find the diffusion coefficients 3,2,1, =iDi  we use the approximate expression (6) of the quasi-steady 

problem and a nonlinear optimization algorithm to solve the least square problem. 
Experimental measures of the quasi-steady depth of the layers and diffusion zone are taken, as well as the 

experimental values of  and the diffusion coefficients . All these values were reported in the 

references or were obtained in the laboratory by the procedure described in the second section above. 
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From this data, theoretical expressions for concentration profiles at each layer and diffusion zone are 
computed, using the linear and nonlinear models (5) and relations (7)-(10). Then a simulation process is performed, 
generating artificial data from the theoretical expressions of the profiles (adding random noise) in order to test the 
feasibility and sensibility of the solution of the inverse problems.  
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Due to technical difficulties in obtaining real measurements in the first two layers, the artificial data 

are generated only at depths )(
^

ji yC my j µ8,6,4,2= , corresponding to those layers, and at depths 

Njmy j ,....,5, =µ , in the diffusion zone. 

Afterwards, we use the generated data to solve the least-square problem of minimizing the function: 
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where the function represents the error between the analytical and experimental concentration data, meanwhile J

Nji ji ,...,5,,4,...,1, == αα  represent different weights in  which may improve the estimates of  J
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D
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D
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Computing was performed on a PC at 900 Mhz, using MATLAB regression programs version 6.5. 
The results of preliminary numerical experiments for the linear model )0( === knm  yield: 

- Estimates of 
1

2

D
D

 and 
2

3

D
D

 are not sensitive to the increase of the number of measurements in the diffusion zone 

when the artificial data do not have random errors. 

- Estimates are very sensitive to the initial vector in the optimization process. It seems that an initial of 
2

3

D
D

 close to the 

order of the actual values is the best option, while for 
1

2

D
D

 the initial value does not influent the result when random 

errors are not considered. 
- Estimates are also sensitive to measurements errors. 

The results of the numerical experiments for a nonlinear model )3,2( === knm , using a more robust 

optimization algorithm yield:  
- Estimates are exacts when the artificial data do not have random errors. 

- Estimates are sensitive to measurement errors, specially the quotient
1

2

D
D

. A regularization process is required.  

- Under the presence of error measurements, the estimates are not significantly different when the data increase in the 
diffusion zone and large weight coefficients are included in the sum of squares . J

In the nonlinear case, several thousands of problems were solved, generating concentration data Zdata  with 

random perturbation of the values of  given in (11). The concentration data were also perturbed with 

random errors of 3 %, while random generated quotients 

321 ,, DDD

1

2

D
D

 and 
2

3

D
D

 were used as initial solutions for the 

optimization algorithm. The following graphics, corresponding to MATLAB figures of 240 problems runs, illustrate the 
numerical results. 

 
4.1 Some illustrative graphics 

Figure 3 shows values of the maximal residual errors between the artificial data and the model data, given by 
the diffusion coefficients estimated only from four measurements in the first two layers and using weight coefficients 
equal to one (diamonds).  These values are compared to the same difference related to diffusion coefficients estimated 

from twelve measurements and weight coefficients equal to  (asterisks). The residuals values are always small and 
there are no significant residual differences between both estimates. 
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Figure 3. 

Figure 4 shows the ANOVA box picture, which compares residual mean differences and exhibits the 
distribution of the corresponding data around the mean value. 

 
Figure 4. 
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Figure 5. 

Figure 5 shows the ANOVA comparison interval, which exhibits no significant difference between the residual 
means. Only in very few cases (1% of all the numerical experiments) significant differences between those mean values 
were noticed. 

 
5. CONCLUSIONS 

A new approach to a free boundary model with Stefan type conditions which describes the nitriding post-
discharge process is presented. Under the assumption of reaching a quasi-steady state for large times, an approximate 
analytical solution is proposed, which is used to recover diffusion coefficients in each layer though an optimization 

algorithm. Numerical experiments show a good fitness for the data and quotient  . However, a regularization 

process should be considered because the quotient is always badly estimated when measurement errors are 

taken into account. 
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